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Abstract--A linear, non-parallel flow model is employed to study the onset of longitudinal vortex instabilit 5 
in laminar forced convection flow over a heated horizontal flat plate with variable surface temperature, 
T~(.v)- T~ = A.vL In the analysis, the streamwise dependence of the disturbance amplitude functions is 
taken into account. The resulting system of linearized disturbance equations tbr the amplitude functions 
constitutes an eigenvalue problem which is solved by a linite difference scheme along with M.iller's shooting 
method. Neutral stability curves as well as the critical values for Gr,'Re~ "~ and the corresponding critical 
wave numbers :~* are presented for Prandtl numbers 0.7 ~< Pr <~ I0 4 over a range of the exponent 
-0 .5  ~< n ~ 1.0. For a given Prandtl number, thermal instabiliD is found to decrease as the value of the 
exponent n increases. Also, for a given value of the exponent n. fluids aith larger Prandtl numbers are 
found to exhibit less susceptibility to instability than fluids x~ith loacr Prandt[ numbers. Ho~evcr. thi, 
latter trend exists for Pr <~ 100. For Pr > 100, the critical values of GG:Re', "- become essentially constant 
and independent of the Prandtl number. The results from the present non-parallel flow analysis are also 
compared with available analytical and experimental results from previous studies. The non-parallel flou 
analysis that accounts for the streamwise dependence of the amplitude functions is found to haxe a 
stabilizing effect as compared to the parallel flow analysis in which streamwise dependence of the disturbance 

is neglected. 

INTRODUCTION 

THE INSTABILITY of  laminar  boundary  layer flows, due 
to either the wave mode or the vortex mode of  insta- 
bility, has been the subject of  many  studies. Instabil i ty 
of  laminar  forced convect ion flow over a horizontal ,  
upward-facing heated plate, arising from the vortex 
mode of  dis turbance,  was first analyzed by Wu 
and Cheng  [1] using the l inear stability theory. 
Moutsoglou  et al. [2] also employed the l inear theory 
to analyze the thermal  instabili ty of  laminar  mixed 
convect ion flow over a heated hor izontal  flat plate. In 
the latter study, the main flow and  thermal  fields were 
treated as non-parallel ,  but the dis turbances  were 
assumed to have the form of  a s ta t ionary  longitudinal  
vortex roll tha t  is periodic in the spanwise direction. 
Tha t  is, the x-dependence  of  the dis turbances  was 
neglected. Recently, Chen and Chen [3] studied the 
vortex instabil i ty of  laminar  boundary  layer flow over 
wedges by employing a non-paral lel  flow model that  
accounted for the streamwise dependence of  the dis- 
turbances.  Very recently, in re-examining the vortex 
instabili ty of  laminar  forced convect ion flow over a 
heated hor izonta l  flat plate, Yoo et al. [4] also con- 
sidered the streamwise dependence of  the dis turbances  
and used the thermal  boundary  layer thickness as the 
reference length scale. Thei r  analysis is good only for 
fluids with very large Prandt l  numbers  (Pr  ~ re) and 
solutions were obta ined  by power series. For  this 
reason, their results are of  limited practical  utility. 

In the present paper,  vortex instabili ty of  l aminar  

forced convect ion flow over a horizontal ,  up,yard- 
facing heated plate with the power-law xariat ion in 
the surface temperature,  T~(.v) = T~ + A.v". is exam- 
ined for a wide range of  Prandtl  numbers ,  using the 
non-paral lel  flow model. The resulting eigenvalue 
problem for the d is turbance  ampli tude functions was 
solved by an efficient finite difference method [5] in 
conjunct ion with Mfiller 's shoot ing procedure.  

Neutra l  stability curves as well as the critical values 
of  Gr,./Re,? 2 and the associated critical waxe numbers  
were obta ined for Prandt l  numbers  of  0.7. 7. 10". 10 ~ 
and 10 ~ over a range of the exponent  ~alues 
--0.5 ~< n ~< 1.0. 

ANALYSIS 

The mahl f l o w  and thermal f iehts 
As the first step in the analysis of  the vortex insta- 

bility of  the flow, a t ten t ion  is directed to the main flow 
and  thermal  fields. Consider  laminar  forced con- 
vection over a hor izonta l  flat plate with its heated 
surface facing upward  and its surface temperature  
varying as T,,,.(x) = T~ + Ax",  where A and n are real 
constants  and  T~ is the free s tream temperature.  The 
free s tream velocity is U~. The physical coordinates  
are chosen such that  x measures the streamwise dis- 
tance from the leading edge of the plate and v the 
distance normal  to the plate. Under  the assumpt ion 
of  cons tan t  fluid properties,  the t ransformed system 
of the boundary  layer equat ions governing the main  
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N O M E N C L A T U R E  

a dimensionless wave number of 
disturbances 

Cr, local friction factor, z,/(pU~/2) 
f reduced stream function, t#/(vU~x) '~'~ 
9 gravitational acceleration 
Gr~ local Grashof number, 

~ / ~ [ T ~ ( x )  - rdx%" 
GrL Grashof number based on L, 

gfl[T~(L ) -  T~]L '/v 2 
L characteristic length 
n exponent in the power-law variation of 

the wall temperature 
Nux local Nusselt number 
p '  perturbation pressure 
P main flow pressure 
Pr Prandtl number 
Re, local Reynolds number, U,:x/v 
ReL Reynolds number based on L, U~L/v 
t dimensionless amplitude function of 

temperature disturbance 
t' perturbation temperature 
T main flow temperature 
u, v, w dimensionless amplitude functions of 

velocity disturbance in the x, y, z 
directions, respectively 

u', v', w' streamwise, normal, and spanwise 
components of perturbation velocity 

U, V streamwise and normal velocity 
components of main flow in the x, y 
directions, respectively 

x, y, z streamwise, normal, and spanwise 
coordinates 

X, Y, Z dimensionless streamwise, normal, 
and spanwise coordinates, defined, 
respectively, as x/L, y/gL, and z/eL. 

Greek symbols 
~t dimensionless wave number of 

disturbances, aX'  "- 
dimensionless wave number of 
disturbances based on thermal 
boundary layer thickness 6, 

/3 volumetric coefficient of thermal 
expansion 

6 m integral momentum boundary layer 
thickness 

fit thermal boundary layer thickness 
e dimensionless parameter, defined as 

Re~ i.,- 
q similarity variable, y(U~/vx)" "- 
0 dimensionless temperature, 

( T -  T~)/[T~,(x) - T~] 
x thermal diffusivity of fluid 
v kinematic viscosity of fluid 
p density of fluid 
~w local wall shear stress 
~O stream function. 

Superscripts 
+ dimensionless disturbance quantity 
- scale quantity defined by equation (20) 
* critical condition or dimensionless main 

flow quantity 
resultant quantity. 

Subscripts 
w condition at the wall 
0 dimensionless amplitude function 
oo condition at the free stream. 

flow and thermal fields can be expressed in dimen- 
sionless form as 

f " + ~ f f " = O  (1) 

0"+ t P r f O ' - - n P r f ' O  = 0 (2) 

f (0)  = f ' ( 0 )  = 0(vo) = 0, f ' ( ~ )  = 0(0) = 1 (3) 

where the similarity variable q(x,y), the reduced 
stream function f (q) ,  and the dimensionless tem- 
perature 0(q) are defined, respectively, as 

= y(U~/vx),.2, f (q)  = d//(vU~x)':2, 

O(q) = ( T -  T ~ ) / I T , ( x ) -  T~]. (4) 

In equations (1)-(3), the primes denote derivatives 
with respect to q and Pr is the Prandtl number. Other 
notations are as defined in the Nomenclature. 

Equations (1)-(3) were solved by a finite difference 
method in conjunction with the cubic spline inter- 
polation scheme to provide the main flow quantities 

that are needed in the thermal instability calculations 
and to provide other physical quantities, such as the 
axial velocity profile f ' (q )  = U/U~, the temperature 
profile 0(r/), the local Nusselt number Nux, and the 
local friction factor Cfx. In terms of the dimensionless 
variables, the last two quantities can be expressed, 
respectively, by 

Nu~ Re~ t..z = -0'(0) ,  Crx Re. t:2 = 2f"(0). (5) 

Formulation of  the stabilio' problem 
In the present study, the linear stability theory is 

employed in the analysis. In experiments [6-9] the 
secondary flow vortex rolls have been found to be 
periodic in the spanwise direction. Thus, the dis- 
turbance quantities for velocity components u', v', w', 
pressure p' ,  and temperature t' are assumed to be 
functions of (x, y, z). These disturbance quantities 
are superimposed on the two-dimensional main flow 
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quantities U, V, W =  0, P. and T to obtain the 
resultant quantities b ~', (2 if',/5, and ? a s  follows: 

C(x, v : ) =  U(x .y )+u ' (x ,y ,z )  

C(x .  y, :) = V(x ,  y) + v ' (x .  >', z) 

~(x ,  y. z) = w'{x,y, z) 

/5{x.y, :) = P ( x , y )  +p ' (x .y .  :) 

?(.v, y :) = T(x y) + t'(x, y, z). I6) 

The resultant quantities given by equation (6) 
satisfy the continuity equation, the Navier-Stokes 
equations, and the energy equation for an incom- 
pressible, three-dimensional steady fluid flow. Sub- 
stituting equation (6) into these equations, subtracting 
the two-dimensional main flow, and linearizing the 
disturbance quantities, one can arrive at the following 
disturbance equa t ions  

&~' ?r '  & r '  
4- =- 4- ~ = 0  

8.'c (~' cz 

81 ~ ~ u' ? t " Pro" 1 
u ' ~  + U v - 4 - v ' v -  4-V - 

c x (.v O ~.l' p 

87) 

°P" + vV 2u , 
8x  

(8)  

81" rCv" ~ V  &/  1 ~p" 
u'-~-- 4- b , -  + t"  ~ -  + I = - =  FvVZt" + gfl t '  

c.v cx  cy cv p 8y 
(9) 

(10) 
( w '  & d  1 88' 

V U ~  + +vV2w ' 
cx  cv p 23 

8 T  Ct" CT 8t" 
u' z + U a-- + t / w -  + V ~- = ~:V-'t" ( l l )  

CX CX c y  CT 

where V 2 = ~"/~x:+O2/8)'2 +Oz/Sz "- is the Laplacian 
operator. 

Since the disturbances are confined within the 
boundary layer of the main flow, the so-called bottling 
effect by Haaland and Sparrow [10], the disturbances 
will have length scales different from those of the 
main flow field [11, 12]. To verify this, the disturbance 
equations are first nondimensionalized by using the 
length and velocity scales of the main flow. The coor- 
dinates are scaled as 

X V Z 
X = £ ,  Y = ~ L '  and Z eL (12) 

where ~ = Re£ ~ z and Ret_ = U~L/v  is the Reynolds 
number based on a characteristic length L(x) .  If 
L = x, then Y = q and Rer = Re, .  Other main flow 
quantities are scaled as 

U V T -  T:~ 
u * = u T ,  v * = - -  0 {13} 8 U ~ '  Tw(x) - T~ 

where U*, V*, and 0 and their derivatives with respect 
to X and Y are of the order of 1. Similarly, the 
disturbance quantities can be scaled as 

It U ~t 

u L ' , '  v L' ,"  w L', " 

p' p'Re~. : t" 
P - - p U e ,  e -  f ig'{ F =  T ~ I v I - T ,  . . . . . . .  (14} 

where u*, v ' ,  w-,  p ' ,  and t -  and their derivatives 
with respect to X and Y are of the order of e.. 

Substituting the above dimensionless variables 
from equations ( 12)-(14) into equations {7)-( 1 IL one 
arrives at 

Cu- ~e "+ ~ w -  
': 7-.v + 8Y + ~z-_ = 0 i15} 

~U* 8u ~ r + 8U* 8tt+ 
U+ ~"A" + U* ¢~A7 4- -g ~4y  _t._ U* ~:~: 

[:p ~ , ( : u  + ¢::u+ 8 : u  ~ 
= -~ :8 t :4 -~ : -T ,~_ ,  4- N : y +  . ~  {16} 

C V*  &" ~ 8 V*  Cr - 
""+ Lv + c'* ,=i~: - " +  c~: + l* - 

(Y 

Pp+ , ¢~et'- ~:t '* P : r "  Gr L 

= - 7 Y  +~' - :x :  + ~~Y-~ + 92  v +aTe:-  {17~ 

8w* 8w*  
u*-,:.x + ~* 7 V  

Pp- ,/: : w-" 8 :w-  ? "B" 
. . . .  ( Z  -.re- ( . i 2  + >yp - ( Z  ~ {18) 

80 8t + r + CO V* 8 t -  
ld + 

U x + u * ~ - z  + - -  ~Y+ 8> 

I ( , ~ - t  + 8b-  ,-:~-~ 
= Pr e" 8~x: 4 - 7 7  >- + ,~Z: ! (19) 

where Rec = U,  L v is the Re2nolds number and 
GrL = 9 f l [ T ~ ( L ) - T ~ ] L " . v ' -  is the Grasho( number 
based on the characteristic length L. Furthermore, 
since GruRe~. is of the order of 1 and Re.: is of the 
order of e-  z, Grt. is of the order of 8 4. 

It is important to note that the term (v- e}PU*./~ Y 
in equation (16) and the term (v+,,e)80 8 Y in equation 
(19) are larger than other terms in the corresponding 
equation by at least an order of (1 e). This means that 
the (X Y, Z)  variables as defined in equation (12} are 
not the appropriate length scales for the disturbances. 
Thus, by rescaling the coordinates for disturbance 
quantities along with the disturbance pressure in the 
form 

(2, P , 2 , / )  = (x, Y,Z,p+)e .  ' : (20} 

one has 
8 u "  tnl " ;  ~ w *  

~ 7.-.~- + 7-~ + T g  = 0 (211 

8U* g~ : U ,  ?u~ ~U* 
e,,+ 7 2 -  + , : ~  + , ~  7 2 -  +e~ : ~ . . . .  

( ' l l -  

~P 

, Cfi + C-'u* ? : u -  U u -  

= -e-~'75- + e " ~  ~ +  ~P-" ; 2 :  (22} 
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'+ + OV* &'+ , +~V* , t V*--~- 
~-~ ~ T + e  u Tg-+a, T-F+d" ~y 

~'fi+ ~2v+ c3:v + ~2V+ GrL + 
= - ~ - ~ -  +82 ff~-_, + ~ + - ~ 7  + g ~e~ t (23) 

/31i2 , ¢~W+ +8 i /2V ,  gw+ 

&/~+ , &-w &2.,+ a,.w + 
= -gT~- + ~ - ~  + T f r - +  ~ (24) 

630 ~l,,2U, C3t+ + v  + ~  G0 +_1/2 ?'t+ + 
V* ----~ 

I ( , ~2t+ 6~2t + ~2t+~ 
= P r _  ~ - ~  + ~  + 82-']" (25) 

Since the terms e Ou+/8~, e 2 dp+/d~, e 2 a2u+/ 
~22, e, 2 ¢32v+fO.Y 2, e 2 a2w+/OX2, and e 2 ~2t+/(~.~2 in 

equations (21)-(25) are smaller than the rest of the 
terms in their respective equations, these terms can be 
omitted. The omission of these lowest order terms 
in the disturbance equations is consistent with the 
level of approximation of the main flow. With the 
above-mentioned terms deleted and by making use 
of equation (20), the disturbance equations reduce to 

Ov + Ow + 
~--~- + - ~  = 0 (26) 

u+ OU* &t + OU* V* ~u+ 
-b-2- + e*-bT + n ~  -'~ + 7-F  + ~--f 

~2u+ ~2u+ 
= -~-~- + - ~  (27) 

ReZ I;'2 u+ ~V* gv + c3V* ~v + 
7 ~  + ~ * T £  + ¢  -UF + v * - -  aY 

~p+ ~2v+ 02v + Gr~ + 
- OY + ~ - Y T + - ~ - + - ~ e ~ t  (28) 

dw + &v + Op + O2w + O~w+ 
U* - ~  + V* OY = - --c)Z + ~ + ~ (29) 

+ O0 * Ot + dO * Ot + 
V - -  u - f f~+U -d-~+ReL"2v+ff-y+ F y  

1 I/g2t + d2t+'~ 
= + ( 3 0 )  

Note that the main flow quantities, such as U*, 
8U*/8X, dU*/OY, V*, 8V*/c3X, 8V*/OY, 80/c)X, and 
c~0/3 Y, can be expressed in terms of f (q ) ,  0(1"1) and 
their q derivatives. For example, U* = f ' (q ) ,  V* = 
- X -  , /z[f  (q) - r/f '(r/)]/2, and 80/O Y = X-'/zO'(q). 

Next, the pressure terms in equations (28) and (29) 
are eliminated by cross differentiation and subtrac- 
tion. The resulting equation is then differentiated 
with respect to Z once and the substitution c~w+/ 
8Z = --dv+/8 Y from the continuity equation is em- 
ployed to remove the terms involving the function 
w + and its derivatives. This operation will yield three 
equations for the disturbance quantities u +, v +, and 

t ÷. For the non-parallel flow model considered here, 
these quantities are expressed as 

(u + , t '+ , t +) = [u0(X, Y), co(X, Y), to(X, Y)] exp (iaZ) 

(31) 

where a is the dimensionless azimuthal wave number 
of the disturbances. That is, the lon~tudinal vortex 
rolls are taken to be periodic in the spanwise Z-direc- 
tion, with the amplitude functions depending on X 
and Y. 

Substituting equation (31) into equation (27), the 
combined form of equations (28) and (29) as 
described above, and equation (30). and letting 

~t 2 = a 2 X ,  u = u o ,  v=voRe~ ' - ,  t = t o  (32) 

one arrives at the following system of partial differ- 
ential equations for the disturbance amplitude func- 
tions u, v, and t: 

D: * * * . y&l u+ai  D u + a , u + a 3 v  = J ' .  ~ (33) 

D 4 v + b .  D3v+b . 2, , , . . ,  . . . D t,+b 3 Dt +b~t ~ b s u + b r t  

= f  X ~ ( D - t ) +  f X - f f ~ ( D t ) - f  ~ Xff-X (34) 

D 2 t + d ~ D t + d * t + d ~ u + d * v  = Pr f ' X  D (35) 

with boundary conditions 

u = v = D v = t = 0  a t q = 0  and ~ (36) 

where 

a * = t s ( f - r l f ' ) ,  a*=~rlf"--~t'- ,  a * = - - f " ,  

b* = ½ ( f - q f ' ) ,  b* = aaf' - ½r/f"-2= 2, 

b * = f "  ~=2(f_qf,), b * = = ' + ~ = z ( q f " - f ' ) ,  

b'~ = ~ o : ' ( f - t l f ' - q 2  f " ) ,  b~ = -7"-(Grx/Re.~2), 

d* = ½ e r ( f - ~ l f ' ) ,  d* = _=2, 

d'~ = ½erqO', d* = -PRO" (37) 

in which f a n d  0 and their derivatives with respect to 
r/are from solutions of equations (1)-(3). 

Equations (33)-(35) are partial differential equa- 
tions and D k stands for the kth partial differentiation 
with respect to q. The boundary conditions, equation 
(36), arise from the fact that the disturbances vanish 
at the wall and in the free stream. The condition 
Dv = 0 results from the continuity equation (26) 
along with w = 0 at r /= 0 and oo. These boundary 
conditions, however, are not sufficient for equations 
(33)-(35) if the Xderivatives of u, v, and t are not to be 
set arbitrarily equal to zero. For weak Xdependence, 
~/~X << c~/(?q and the terms on the fight-hand side of 
equations (33)-(35) can be deleted or 'truncated'. This 
results in a system of equations for the 'local simi- 
larity' solution method, that resembles closely the sys- 
tem of equations for the case of the parallel flow model 
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in which the amplitude functions u, v, and t depend 
only on the Y or q coordinate. 

To define the problem completely, one needs to 
specitk the initial conditions for u, v, and t at an 
upstream location X = X~. However, for the problem 
considered here, the terms involving X &'#X can be 
replaced with ,7 #/gq by the coordinate t ransformation 

Xyx = x ~  ~ = - ~ , 7 ~  (38)  

With this transformation,  equations (33)-(35) can be 
reduced to the following system of  'ordinary differ- 
ential equations" : 

D : u + a l  D u + a 2 u + a 3 v = O  (39) 

D*t 'mbl D 3 v + b :  D2t '+b3 Dc + b a t ' + b s u + b 6 t  = 0 
(40) 

D2t+d~ D t + d : t + d 3 u + d a v  = 0 (41) 

along with the same boundary conditions as given bv 
equation (36). The coefficients in equations (39) (41) 
~II'C 

t,, = ' / :  

ha = b*, 

. .  = a.*. a~ = a~' 

be = ~./"-2:z-', b3 = f " -  ~-:~:f 

b5  = b*~ b 6 = b* 

dl =- !P r f ,  d 2 = d * ,  d3 = d ~ ,  d4 = d * .  (42) 

The system of coupled differential equations, equa- 
tions (39)-(41), along with the boundary conditions, 
equation (36), constitutes an eigenvalue problem of 
the form 

E(=, Gr~,/ Re~ "-: Pr, n) = 0. (43) 

For  given values of  the exponent n and the Prandtl 
number Pr, the value of  GrURe~ ~z satisfying equation 
(43) is sought as the eigenvalue for a prescribed value 
of  the wave number :~. 

NUMERICAL M E T H O D  OF SOLUTIONS 

The system of equations for the main flow and 
thermal fields, equations (1)-(3), was solved by a finite 
difference scheme in conjunction with a cubic spline 
interpolation method similar to, but modified from 
that described in ref. [5] to provide the main flow 
quantities f ,  f ' ,  f " ,  O, and O" that are needed in the 
stability computat ion as well as in the determination 
of  the local Nusselt number and the local friction 
factor. To conserve space, the details of  the finite 
difference method of  solution are omitted here. The 
stability problem, equations (39)-(41) and (36), 
was solved by a finite difference scheme along with 
Mfiller's shooting method, which parallels those 
described in ref. [5] and is also not repeated here. It 
suffices to mention some of its highlights. Equations 
(2) and (41) will become stiffwhen the Prandtl number 
is large. To solve stiff differential equations by the 
finite difference method, an upwind scheme or its equi- 

valent is required. In the present study a finite differ- 
ence method based on a weighting Factor [5] is used 
which enables the numerical scheme to shift auto- 
matically from the central difference algorithm to the 
upwind difference algorithm, and vice versa. Also, to 
proceed with the numerical calculation of  the stability 
problem, the boundary conditions at ,7 = ,7~ need to 
be approximated by the asymptotic solutions of  equa- 
tions (39)-(41) at ~l = ,7, (i.e. at the edge of  the bound- 
ary layer). Since j ' " =  0 = 0 ' =  0 at '7 = ,7,, the 
asymptotic solutions for u, v, and t at ,7 = '7~ can be 
obtained as 

u, = exp ( - m ' 7 ,  ), 

v~ = exp ( - : U l , ) .  

v~ = e x p ( - r q ~ ) ,  

t~ = exp ( - r * l , ) ,  

I t  I = U t ~ U 4 ~ -  O ,  

t'. = exp ( - m'7, ). 

v4 = e x p ( - b , 1 ,  ). 

tl = t_, = t4 = 0 (44) 

where 

r =  { - P r C ,  + [ ( P r C t ) z + 4 : t : ]  ~ ~-} 2 

m = { - c ,  + [C~ + 4:~-'1' :',-'" 
b = { - C , + [ C ~ + 4 ( : ~ 2 - 1 " ' 2 ) ]  ' -'I 2 (45) 

with C, = - j / 2 .  At any '7 location, the solutions for 
u, c, and t are 

u(q) = K iu~(q)+K:u: (q)+K3u3(q)+K~u~(q)  

v('7) = K I v tO1) + K'_v:(tl) + K3tq ('7) + K~v4(q) 

t('7) = K , t , ( q )+K,_ t2 (q )+K3t3 ( ' 7 )+K4ta (q )  (46) 

where K~, K_,, K3. and K4 are constants. 
With a preassigned value of  the exponent n. the 

main flow solution is first obtained for a fixed Prandtl 
number, Pr. Next, with the wave number :~ specified 
and the guessed value ofGr , /Re~  2 the finite difference 
form of  equations (39)-(41) and (36) is numerically 
solved from q = 0 to q~, ending with the as.~mptotic 
solutions for u, t', and t at q = q~. The correction for 
the value of  Gr.~/Re~ '- is then made by Mfiller's shoot- 
ing method until the boundary conditions at the 
wall ('7 = 0) are satisfied within a certain specified 
tolerance [2]. This yields a converged value of  
Gr~/Re~ 2 as the eigenvalue for given values of n. Pr. 
and :~. 

After some experiments with the numerical solu- 
tion, a step size of Aq = 0.005 and a value of  '7~ = 
10 were found to be sufficient for both the main flow 
and the stability calculations for Pr = 10 z. I0 ~, and 
104. However,  for Pr = 0.7 and 7, a step size of  
Aq = 0.005 and a value of  '7,_ = 20 were needed to 
provide accurate numerical results for both. It is also 
of  worth noting that a smaller step size A,'/is found to 
be more important than a larger value of  '7 ~ for the 
accuracy of  the numerical computations, especially 
when the wave number :~ is small. 
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RESULTS AND DISCUSSION 

To determine the stability and instability domains  
and the min imum value of  Grx/Re~/~ for the first onset 
of  the vortex instability under various values o f  the 
exponent n and the Prandtl number Pr, neutral sta- 
bility curves (i.e. the Grx/Re~/" vs wave number curves) 
as well as the critical values o f  Grx/Re~/~ and the 
corresponding critical wave number were obtained. 
Neutral stability curves for 0.7 < Pr <<. l0  s are plotted 
in Fig. 1 for exponent n = 0 (which is the uniform 
wall temperature case, U W T )  and in Fig. 2 for n = 0.5 
(which corresponds to the uniform surface heat flux 
case, UHF) .  It can be seen from these figures that 
as the Prandtl number increases the neutral stability 

curves shift right-upward to larger values o f  the wave 
number and Grx/Re.~':. That is, the flow will become 
less susceptible to the vortex mode of  instability as 
the Prandtl number increases. In addition, it can be 
observed that the larger the Prandtl number, the larger 
is the critical wave number, ~*. 

Figures 3-7 show the effect of  the exponent n on the 
neutral stability curves for various Prandtl numbers 
between 0.7 and 10 ~. It can be seen from these figures 
that for a given Prandtl number, the neutral stability 
curve shifts upward with increasing value o f  the 
exponent n. That is, the flow becomes less susceptible 
to the vortex mode  of  instability as the value of  the 
exponent n increases. 

The critical values o f  GrJRe~ ;~ denoted by G* and 
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the cor responding  critical wave n u m b e r  ~* from the 
present calculat ions for the different values of  n and  
Pr are listed in Table  1. F rom Table  1. it can be seen 
that  for a given Prandt l  number  Pr the critical values 
of  Gr~/Re~ -" for n > 0 are larger than that  for the case 
of  n = 0 (uniform wall temperature) ,  but are smaller 
x~hcn *~ < 0. This implies that the flow will become lcss 
susceptible to the vortex instabili ty as the value of n 
increases. This is to be expected, because when n = 0 
there is a step j u m p  in the tempera ture  difference 
( T , , -  T , )  = A for all x, whereas for n > 0 the wall 
tempera ture  starts with T~-- -T~ at x = 0  and 
increases with x, and  for n < 0 it starts with T~ --+ ~ 
at x = 0 and  decreases with x. Thus,  for n < 0 larger 
jumps  in ( T w - T ~ )  occur at small x than  for n = 0, 
which contr ibutes  to an earlier onset  of  the instability 
and hence a smaller critical Gr,/Re3~ *e value. This same 
trend was also observed in refs. [11, 12]. Also included 
in Table I are the - 0 " ( 0 )  a n d f " ( 0 )  values. For  a given 
Pr, a larger value of  the exponent  n is seen to provide 
a larger local Nusselt  number  due to the larger - 0'(0) 
value. 

The effect of  the exponent  n on the critical values 
of Gr, 'Re~ " as a funct ion of  Prandt l  number  is illus- 
trated in Fig. 8. It is interesting to observe from Fig. 
8 that  for a given value of  the exponent  n the critical 
Gr~/Re,: : value increases with increasing Prandt l  
number  until Pr ~ 100 and then becomes almost  a 
constant ,  finite value when the Prandt l  number  is 
larger than  100. 

In Table  2 the critical values of  Gr,/Re.~:,  G*, and  
the critical wave number ,  :~*, from the present analysis 
for the case of  n = 0 (uniform wall temperature)  are 
compared  with results f rom the previous studies by 
others. Owing to some numerical  errors  in the work 
of  Wu and  Cheng  [1], as pointed out  by Moutsoglou  
et al. [2], the accuracy of  the results from ref. [1] is 
subject to quest ion.  The results from ref. [2] were 
based on the parallel flow model in which the ampli- 
tude funct ions of  the dis turbances  are assumed to 
be independent  of  the streamwise coordinate .  The 
predicted critical values of  G r , / R e  3'2 f rom ref. [2] are 
about  two orders of  magni tude  lower than  those from 
the experiments  by Gilpin et al. [6], Mohar re r i  et al. 

[9]. and Hayashi  et al. [13]. 
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The critical Grx/Re~ '2 values from the present analy- 
sis for the U W T  case (n = 0) are 8.163, 8.363, and 
8.394 for Pr = 102, 103, and 104, respectively. This is 
in contrast to the value of  7.797 obtained by Yoo et 

a/. [4] by power series solution for Pr ~ vo. The 
present analysis is not limited to large Prandtl num- 
bers and the present results are believed to be more 
accurate. Also, the present critical wave number ~t* 
can be related to the critical wave number ~* based 
on the thermal boundary layer thickness 6~, as 
employed in ref. [4], by 

:t* = 5~* Pr1:3/4.64 (47) 

where the constant 4.64 comes from the coefficient of  
the momentum thickness 6, , /x  = 4.64Re;- ~:2 [14] and 
6,, - Pr  ~/3 fit. It appears that ~t* --. oo when Pr ---, oo. 
However, for large Prandtl numbers, say, Pr  = 102, 
10-k and 104, the critical wave numbers from the pre- 
sent calculations for the n = 0 case in terms of  ~* are 

respectively 1.923, 1.978, and 1.983. Thus, this trend 
in the change of  ~* with increasing Pr agrees well 
with the calculated value of  1.98 by Yoo  et al. [4] for 
Pr ~ zc.  

The results of  Chen and Chen [3] for the U W T  case 
provide the critical values of  G r d R e ~  2 =  7.78-8.13 
and ~* = 1.97 for Pr = 1 - ~ ,  which are generally in 
good agreement with the present results. 

It is important  to note that for a given value of  the 
exponent n both the critical values of  Grx/Re~ "- and 
the corresponding critical wave number ~t* increase 
with an increase in the Prandtl number. However, the 
critical Grx/Re~ ~ 2 value approaches a finite value when 
the Prandtl number becomes larger than 100 (see Fig. 
8). In addition, for a given Prandtl number Pr,  a larger 
value of  the exponent n provides a larger critical 
Grx/ Re 3;2 value. 

F rom a comparison between the results from the 
present analysis and that of  Moutsoglou et  al. [2], 
it is apparent that an accounting of  the streamwise 
dependence of  the disturbance amplitude functions 
reduces the susceptibility of  the flow to the vortex 
mode of  instability. From Table 2 one can see that the 
critical values of  GrJRe.~ i2 for Pr  = 0.7 and 7 from 
the present analysis increase by about one order of  
magnitude when compared with the results of  ref. [2], 
thus bringing the predicted values.to one order closer 
to the experimental values for air and water as given 
in refs. [6, 9, 13]. The discrepancy in the results 
between the linear theory and experiment seems 
reasonable because natural disturbances in a bound- 
ary layer flow need to be amplified before they can be 
detected, whereas the present prediction is based on 
the linear theory in which the disturbance quantities 
are assumed to be infinitesimally small. 

Table 2. Comparison of critical values of G* = (Gr,/Re~ 2)., n = 0 (UWT) 

Reference Main flow Model Pr G* ~* 

Wu and Cheng [1] (1976) forced parallel 0.7 292.5 0.II 
convection flow 10 75.48 1.72 

102 13.46 2.95 
l 0  3 2.406 3.90 
104 1.816 7.2 
0.7 0.447 0.001-0.060 
7 0.434 0.0008-0.036 

I-oo 7.78-8.13 0.425-oo 

Moutsoglou et al. [2] (1981) mixed parallel 
convection flow 

Chen and Chen [3] (1984) forced non-parallel 
convection flow 

Yoo et al. [4] (1987) forced non-parallel 
convection flow 

Present analysis forced non-parallel 
convection flow 

Hayashi et al. [13] (1977) forced experiment 
convection 

Gilpin et al. [6] (1978) forced experiment 
convection 

Moharreri et al. [9] (1988) mixed experiment 
convection 

z~ 7.797 zc 
(:~* = 1.98) 

0.7 4.2556 0.52183 
7 4.8184 0.56796 

30 7.6285 1.1691 
50 7.9400 1.4729 
102 8.1631 1.9235 
103 8.3628 4.2627 
l0 s 8.3941 9.2089 
0.7 192 -- 

(air) 
7 46-110 0.895--2.049 

(water) 
0.7 ~100 - -  

(air) 
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As a final note, it is ment ioned  here tha t  solutions 
of 'e~vat ions  (33)-(36) by the local similarity method,  
with terms conta in ing X ?/g'X in these equat ions  
deleted, have provided critical values of  G * =  
(Gr~Re~' : )*  tha t  are smaller  than those from solu- 
tions of  equat ions  (39)-(41).  For  example, for 
Pr = 0.7 the value of  G* from the local similarity 
solution varies from 1.7525 to 2.9620 to 4.1664 as the 
value of  the exponent  n is increased f rom - 0 . 5  to 0 
to 1.0. This is in contrast  to the values of  G* of 1.9853 
to 4.2556 to 6.8730 listed in Table 1 from solut ions of  
the " tmtruncated '  equat ions  (39)-(41).  The cor- 
responding critical G* values for Pr = 100 with 
n = - 0 . 5 ,  0, and 1.0 are 0.2804, 0.5986, and  1.0702, 
as compared  to 3.9221,8.1631, and 13.380 from Table  
1. Thus, the local similarity solution yields a critical 
G* value that  decreases with increasing Prandt l  num- 
ber Pr for a given value of  n. This t rend is opposi te  
to that  from solutions of  equat ions  (39)-(41),  which 
sho~vs that  G* increases with increasing Pr. 

CONCLUSION 

In this paper, thermal  instability of  forced con- 
vection in laminar  bounda ry  layer flow over  a heated 
hor izontal  flat plate with power-law var ia t ion in the 
surface tempera ture  has been investigated analytically 
using the non-paral lel  flow model. Neutra l  stability 
curves as well as the critical values for Grx/Re.~ :2 and 
the cor responding  critical wave numbers  are presented 
for Prandt l  numbers  0.7 ~< Pr <,% 10 ~ covering 
exponent  values - 0 . 5  ~< n,%< 1.0. The major  find- 
ings from the present study can be summarized as 
follows. 

(I) For  the power-law var ia t ion in the wall tem- 
perature,  the critical value of Grx/Re.~ 2 and  the cor- 
responding critical wave n u m b e r  a* bo th  increase with 
increasing value of  the exponent  n for a given value 
of  the Prandt l  number  Pr. 

(2) For  a given value of  the exponent  n, the critical 
values of  Grx/Re~ 2 and ~* both  increase with increas- 
ing value of  the Prandt l  number  Pr. However,  the 
critical Gr~/Re~': value approaches  a finite, cons tan t  
value when the Prandt l  n u m b e r  Pr increases to a value 
larger than  100. 

(3) The more  rigorous analysis by the non-paral le l  
flow model in the present  study provides a larger 

critical Gr~:'Re~ z value than  the previous analysis by 
the parallel flow model.  
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INSTABILITE THERMIQUE DE LA CONVECTION FORCEE SUR UNE PLAQUE 
PLANE HORIZONTALE, CHAUDE, NON ISOTHERME 

R~sumg----Un module lin~aire fi ~oulement non parall61e est utilis6 pour &udier l'apparition de l'instabilit6 
tourbillonnaire lon~tudinale dans l'6coulement forc6 laminaire pari~tale variable selon T~(x) - T,~ = A.~'. 
Dans cette analyse, la d~pendance des fonctions d'amplitude de perturbation est prise en compte. Le 
syst~me r~sultant d'~quations lin~aris6es pour les fonctions d'amplitude constitue un probl~me aux valeurs 
propres qui est r~solu par un schema aux differences finies avec la m~thode de tri de Miiller. Les courbes 
de stabilit~ neutre ainsi que les valeurs critiques de Grx/Re~/~ et les nombres de Prandtl 0,7 ~< Pr <~ 10 ~ 
avec un domaine d'exposant - 0 ,5  ~< n ~< 1,0. Pour un nombre de Prandtl donn~, l'instabilit~ thermique 
d6croit lorsque l'exposant n augmente. Pour une valeur donn~e de n, les fluides ~t grand nombre de Prandtl 
montrent moins de sensibilit~ aux instabilit6s que des fluides ~i faible nombre de Prandtl. Cette tendance 
existe pour Pr <~ 100. Pour Pr > 100, les valeurs critiques de Gr~/Re 3/~ deviennent constantes et ind6- 
pendantes du nombre de Prandtl. L'analyse fi ~coulement non parall61e qui tient compte de la d~pendance 
des fonctions d'amplitude a un effet stabilisant par rapport fi l'analyse ~t ~coulement parall~le dans laquelle 

on n~glige cette d6pendance. 

DIE THERMISCHE INSTABILIT,~T EINER ERZWUNGENEN 
KONVEKTIONSSTROMUNG OBER EINE BEHEIZTE, NICHT ISOTHERME 

WAAGERECHTE EBENE PLATTE 

Z u s a m m e n f a s s u n g - - M i t  Hilfe eines linearen Modetls fiir nicht-parallele Str6mung wird das Einsetzen der 
L~ingswirbel-lnstabilitfit in laminater erzwungener Konvektionsstr6mung ,~iber eine beheizte horizon- 
tale ebene Platte bei variabler Oberflfichentemperatur (T~(x)-T~ = Ax") untersucht. Dabei wird die 
Abh/ingigkeit der St6rungsamplituden-Funktionen in Str6mungsrichtung beriicksichtigt. Es ergibt sich ein 
System yon linearisierten St6rungsgleichungen f(ir die Amplituden-Funktionen, das ein Eigenwertprob- 
lem darstellt. Dieses wird mit Hilfe eines Finite-Differenzen-Verfahrens unter Verwendung des Zufalls- 
verfahrens nach Mfiller gel6st. Es werden die Kurven neutraler Stabilit~it berechnet, auBerdem die 
kritischen Werte f(ir Gr~Re3~ "- und die entsprechende kritische Wellenzahl :t* (Prandtl-Zahl: 0,7 
Pr <<. 10~; Exponent: -0 .5  ~< n ~< 1.0). Es zeigt sich, dab bei gegebener Prandtl-Zahl die thermische In- 
stabilit'/it mit steigenden Exponenten abnimmt. Fiir einen gegebenen Wert des Exponenten n sind Fluide 
mit groBer Prandtl-Zahl weniger anf'/illig fiir die Instabilitfit als Fluide mit kleiner Prandtl-Zahl. Dieser 
Trend gilt fiir Pr <~ 100. F/Jr Pr > 100 wird der kritische Wert von G r j R e ~ "  im wesentlichen konstant und 
unabhfingig yon der Prandtl-Zahl. Die Ergebnisse der hier vorgestellten Untersuchung werden mit verfiig- 
baren analytischen und experimentellen Ergebnissen aus friiheren Studien verglichen. Dabei zeigt sich, 

daB die Beriicksichtigung der Amplituden-Funktionen einen stabilisierenden Einflufl hat. 

TEH.r lOBA.q  HEYCTOFIqHBOCTb BBIHV'h(~EHHOFO KOHBEKTHBHOFO T E q E H H , q  
H A ~  HAFPETOFI HEH3OTEPMHqECKOFI FOPH3OHTAHbHOFI H.rlOCKOFI H.rlACTHHOFI 

AlmoTallml----f[HHe~Ha.q MO~eJIb HenapaJule31bHOrO TeqeHH$1 HcnoYIb3yCTC~ ~ g  HCC.JIe]IOBaHH~ BO3HHKHO- 
BeHH~i npo~oJIbHOfi BHxpeBofi HeyCTOfiqHBOCTH npH HaMHHapHOM B~y~K~eHHOM EOHBeKTHBHOM 
TCqeHHH Ha~ HarpeTofi ropH3OHTa~bHOfi IUIOCKOfi H;IaCTHHOfi C nepeMeHHO~ TeMnepaTypO~ noBepx- 
Hoc~rH, Tw(x ) -- T~ -~ Ax n. FIpH aHa~H3e yqHTHBaeTcg 3aBHCHMOCTb OyHKUH~ a M n . ~ l l T y ~  go.qe6aHilfi OT 
HanpaBJleHH~l Te~IeHHS. rIoJly~eHHa~i CHCTeMa JIHHeapH3OBaHHblX ypaBHeHHfi BO3MyI~eHHIi ~3DI aMIUIH- 
Ty]IH~X ~yHKRHfi npe~cTaB~aeT co6of i  ~a~aqy Ha CO~C'I"BeHHbIe 3Ha~eHHS, pemaeMylo  c HCHO~b3oBa- 
HHeM KOHeLIHo-pa3HOCTHOI4 cxe.'vfb/ H M~l'or~a HpHcTpCJIKH !10 M~o~L~epy. Hefrrpa~bHHe XpHB~e 
yeTOfiqHBOCTH, a T a M e  KpHTHq~KHe 3HaqeHH$[ Gr~/Re~ '2 H COOTBCTCTByrOuIHe EpHTHq~KHe BOJIHOBble 
qHC~a 0~* npc]ICTaB~eHH R~g 3HaqeHH~ qHcYIa l'Ipan~lT.~g 0,7 ~ Pr ~ 104 B ~IHana30He 3HatleHHfi noKa3a- 
Tens  crenenH - -0 ,5  ~ n ~ 1,0. O 6H apy~eH o ,  ~TO npH dpHKCHpoBaHHOM 3HatleHHH tlHC~a I'IpaH~T~S Ten- 
.rloBa~l HeyCTO~qHBOCTb yMeHbIHaCTC$1 C pOCTOM HoKa3aTe.~l CTeHeHH n. rlpHqCM npH ~aHHOM 3HaqeHHH 
noKa3aTenfl creneHH n ~ O C T H  C BUCO~MH ~HC~aMH I'IpaH~T~S n p o g B ~ O T  MeHbIHylO BO~HpHHM~H- 
BOCTb K HeycTofi~HBOCTH, qeM ~H/IKOCTH C HH3KHMH qgC.rlaMH [IpaH~'r~a. O~lHagO 3Ta TeH~eHHHR 
cytueCTByeT npH Pr ~ 100. K o r e a  Pr > 100, KpHTHqCCI(He 3Ha~eHHg GrJRe~/" CTaHOB~ITC~ CyllleCTSeHHO 
nOCTO~HHMMH H He 3aaHc~T OT qHcna l - lpaH~T~.  Pe3y~IbTaTbl npose~eHHoro  aHa~H3a Henapa~t~e~b- 
n o r o  Tc~ieHHg CpaBHHBalOTCS C HMelORtHMHCg HHa.qHTHq~KHMH H 3KCHepHMeHTaJIbHbIMH RaHHbiMH I I ~ -  
Rb~ylHHX HCCHeRoBaHHfi. Ha~i/leHo, qTO npH aHa~H3e Henapa.rtneHbHoro TeqCHHS, y~rb iBalo~eM 
3aBHMOCTb aMIUIHTyI1HIdX dpyHKllH~ OT HaHpaB.rleHH~i HOTOKa, IIpO~iB2/~I~'I'C~I cra6rL~n3npy~ottmfi ~ l ~ e r r ,  
OTCyrCrBy]OmH~ n p .  aHa~lH3e c nOMOLUb]O Mo/Ie3H Henapa~ae~bHoro  Te~eHHU, S KOTOpOM 21aHHO~ 

3aBHCHMOL~biO npcHe6pcra~oT. 


