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Abstract—A linear, non-parallel flow model is employed to study the onset of longitudinal vortex instability
in laminar forced convection flow over a heated horizontal flat plate with variable surface temperature.
T.(x)—T, = Ax". In the analysis, the streamwise dependence of the disturbance amplitude functions is
taken into account. The resulting system of linearized disturbance equations for the amplitude functions
constitutes an eigenvalue problem which is solved by a finite difference scheme along with Miiller’s shooting
method. Neutral stability curves as well as the critical values for Gr /Re? * and the corresponding critical
wave numbers 2* are presented for Prandtl numbers 0.7 < Pr < 10* over a range of the exponent
—0.5 < n < 1.0. For a given Prandtl number, thermal instability is found to decrease as the value of the
exponent n increases. Also, for a given value of the exponent a. fluids with larger Prandt! numbers are
found to exhibit less susceptibility to instability than fluids with lower Prandt numbers. However. this
latter trend exists for Pr < 100. For Pr > 100, the critical values of Gr . Re! ? become essentially constant
and independent of the Prandtl number. The results from the present non-parallel flow analysis are also
compared with available analytical and experimental results from previous studies. The non-parallel flow
analysis that accounts for the streamwise dependence of the amplitude functions is found to have a
stabilizing effect as compared to the parallel flow analysis in which streamwise dependence of the disturbance
1s neglected.
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INTRODUCTION

THE INSTABILITY of laminar boundary layer flows, due
to either the wave mode or the vortex mode of insta-
bility. has been the subject of many studies. Instability
of laminar forced convection flow over a horizontal,
upward-facing heated plate, arising from the vortex
mode of disturbance, was first analyzed by Wu
and Cheng [l] using the linear stability theory.
Moutsoglou et al. [2] also employed the linear theory
to analyze the thermal instability of laminar mixed
convection flow over a heated horizontal flat plate. In
the latter study, the main flow and thermal fields were
treated as non-parallel, but the disturbances were
assumed to have the form of a stationary longitudinal
vortex roll that is periodic in the spanwise direction.
That is. the y-dependence of the disturbances was
neglected. Recently, Chen and Chen (3] studied the
vortex instability of laminar boundary layer flow over
wedges by employing a non-parallel flow model that
accounted for the streamwise dependence of the dis-
turbances. Very recently, in re-examining the vortex
instability of laminar forced convection flow over a
heated horizontal flat plate, Yoo er /. [4] also con-
sidered the streamwise dependence of the disturbances
and used the thermal boundary layer thickness as the
reference length scale. Their analysis is good only for
fluids with very large Prandtl numbers (Pr — =) and
solutions were obtained by power series. For this
reason, their results are of limited practical utility.

In the present paper, vortex instability of laminar

forced convection flow over a horizontal. upward-
facing heated plate with the power-law variation in
the surface temperature, T,.(v) = T, + Ax" 15 exam-
ined for a wide range of Prandtl numbers. using the
non-parallel flow modecl. The resulting eigenvalue
problem for the disturbance amplitude functions was
solved by an efficient finite difference method [5] in
conjunction with Miiller’s shooting procedure,

Neutral stability curves as well as the critical values
of Gr./Re? * and the associated critical wave numbers
were obtained for Prandtl numbers of 0.7. 7. 107, 10°
and 10* over a range of the exponent values
-05<n< 1.0

ANALYSIS

The main flow and thermal fields

As the first step in the analysis of the vortex insta-
bility of the flow, attention is directed to the main flow
and thermal fields. Consider laminar forced con-
vection over a horizontal flat plate with its heated
surface facing upward and its surface temperature
varying as T,(x) = T, + Ax". where 4 and n are real
constants and T, is the free stream temperature. The
free stream velocity is {',. The physical coordinates
are chosen such that x measures the streamwise dis-
tance from the leading edge of the plate and » the
distance normal to the plate. Under the assumption
of constant fluid properties, the transformed system
of the boundary layer equations governing the main
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NOMENCLATURE

a dimensionless wave number of Greek symbols

disturbances 2 dimensionless wave number of
C:. local friction factor, 7,,/(pU% /2) disturbances, X' ?
f reduced stream function, y/(vU, x)"? a dimensionless wave number of
g gravitational acceleration disturbances based on thermal
Gr. local Grashof number, boundary layer thickness &,

gBIT(x) = T ]/

Gr,  Grashof number based on L,
gBITL)~T,]L>|v?

L characteristic length

n exponent in the power-law variation of
the wall temperature

Nu, local Nusselt number

P perturbation pressure

P main flow pressure

Pr Prandtl number

local Reynolds number, U, x/v

Reynolds number based on L, U L/v

t dimensionless amplitude function of

temperature disturbance

perturbation temperature

T main flow temperature

u, v, w dimensionless amplitude functions of
velocity disturbance in the x, y, z
directions, respectively

W, v, w  streamwise, normal, and spanwise

components of perturbation velocity

streamwise and normal velocity
components of main flow in the x, y
directions, respectively
streamwise, normal, and spanwise

coordinates

X, Y, Z dimensionless streamwise, normal,
and spanwise coordinates, defined,
respectively, as x/L, y/eL, and z/eL.

uv

X, ¥z

B volumetric coefficient of thermal
expansion

O integral momentum boundary layer
thickness

o, thermal boundary layer thickness

dimensionless parameter, defined as

Re[ 12

similarity variable, y(U,./vx)"?

dimensionless temperature,

(T=T )T —T,]

> =

K thermal diffusivity of fluid
v kinematic viscosity of fluid
P density of fluid
Tw local wall shear stress
[V stream function.
Superscripts
+ dimensionless disturbance quantity
- scale quantity defined by equation (20)
* critical condition or dimensionless main
flow quantity
) resultant quantity.
Subscripts
w condition at the wall
0 dimensionless amplitude function

o0 condition at the free stream.

flow and thermal fields can be expressed in dimen-
sionless form as

S+aff =0 n
O +5Prf0—nPrf0=0 ()]
S0 =/"(0) =0(c) =0, f'(cc)=10(0) =1 (3)

where the similarity variable n(x,y), the reduced
stream function f(n), and the dimensionless tem-
perature () are defined, respectively, as

n=yU. )" fn) =y¢/(vU.x)",
001) = (T—T )NTulx) — T). G

In equations (1)-(3), the primes denote derivatives
with respect to n and Pris the Prandtl number. Other
notations are as defined in the Nomenclature.
Equations (1)-(3) were solved by a finite difference
method in conjunction with the cubic spline inter-
polation scheme to provide the main flow quantities

that are needed in the thermal instability calculations
and to provide other physical quantities, such as the
axial velocity profile f"(n) = UJ/U,, the temperature
profile 6(n), the local Nusselt number Nu,, and the
local friction factor Cy,. In terms of the dimensionless
variables, the last two quantities can be expressed,
respectively, by

Nu,Re7"? = —0°(0), Ci, Rel? =21"(0). (5

Formulation of the stability problem

In the present study, the linear stability theory is
employed in the analysis. In experiments [6-9] the
secondary flow vortex rolls have been found to be
periodic in the spanwise direction. Thus, the dis-
turbance quantities for velocity components u’, ¢/, w’,
pressure p’, and temperature ¢ are assumed to be
functions of (x, y, £). These disturbance quantities
are superimposed on the two-dimensional main flow
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quantities U, V, W= 0, P. and T to obtain the
resultant quantities U. V. W, P, and T as follows :

Clx,v,2) = Ulx. )+ (x.v.2)

ey o) = Pl +o'(xy, -

W(x.1.2) = w{xy, o)

Px.p,2) = P(x, ) +p'(x.1.2)

Ty, 2) = T(x, y)+(x, ¥, 2). (6)

The resultant quantities given by equation (6)
satisfy the continuity equation, the Navier-Stokes
equations, and the energy equation for an incom-
pressible, three-dimensional steady fluid flow. Sub-
stituting equation (6) into these equations, subtracting
the two-dimensional main flow, and linearizing the
disturbance quantities, one can arrive at the following
disturbance equations:

cu' o ow
= —+—=—=0 (7)
cx oy 0z
it cu’ et cu 1 ¢y .
W +Us-+t" % + =—- .p +vV-u
cx ( cr ey cx
(8)
J Ct ¢V ct I cp ., ,
W-—4+U—+t'—+ /T,—————,,[*)—+\'V'l‘+g[)’[
cx &y Cy p ey
(9
cw’ on’ 1 ép’ ,
i o R v (10)
Cx ¢y p C:
cT ar’ cT &t .
W — + U +rv' = +V—=kV-t an
cx éx éy ¢y

where V* = ¢7/éx?+8%¢y*+07/¢=7 is the Laplacian
operator.

Since the disturbances are confined within the
boundary layer of the main flow, the so-called bottling
effect by Haaland and Sparrow [10], the disturbances
will have length scales different from those of the
main flow field [11, 12]. To verify this, the disturbance
equations are first nondimensionalized by using the
length and velocity scales of the main flow. The coor-
dinates are scaled as

Y=-=

X——'\‘
L el’

and ZZE (12)

where ¢ = Re; '"? and Re, = U, L/v is the Reynolds
number based on a characteristic length L(x). If
L = x, then Y =n and Re, = Re,. Other main flow
quantities are scaled as

U |4

T-T
U* = — VE = x
U,

“rm-r. Y
where U*, '*, and 8 and their derivatives with respect
to X and Y are of the order of 1. Similarly, the
disturbance quantities can be scaled as

2021
u G i
wr=y ) P U wh=
. P PRy ‘
== e, | = o ¢
P pUse  plU; T.(0)-T, (4

where u™. ¢™. w™. p~, and ¢~ and their derivatives
with respect to X and Y are of the order of ¢.

Substituting the above dimensionless variables
from equations (12)-(14) into equations (7)-{11), one
arrives at

— et — = 5
cYy Y o oz 0 (s
cuU* cut vt Ut -
E T el vl S A
Y T T E
14 LCtut Ctu Crut
— & YE o Rl
Y ? cX- cY- cZ- (16)
cl* Lo coto v l"*(‘l -
o cY oY ! Y + cY
_ cpt N +(':z'* cre LGy o
Ty TR e T oyt T T Rt (
U cw” Ly ( u;
cX Y
cp Nt CTwT
= e el T — e+ 1
cZ * cX- Y- Z (8
L0 L0 e dl cre
= UF —= — V¥
“ CX+ cX & ¢Y Cc}

YA .*r) (19
=\ Ty ‘7, )

where Re, = U, L v is the Rcynolds number and
Gr, = gB[T.(L)—=T,]L/v" is the Grashof number
based on the characteristic length L. Furthermore,
since Gr,/Re; is of the order of | and Re; is of the
order of =%, Gr, is of the order of ¢~ *.

It is important to note that the term (¢~ &)cU*/CY
in equation (16) and the term (¢*/&)¢f ¢ ¥ in equation
(19) are larger than other terms in the corresponding
equation by at least an order of (1°¢). This means that
the (X, Y, Z) variables as defined in equation (12) are
not the appropriate length scales for the disturbances.
Thus, by rescaling the coordinates for disturbance
quantities along with the disturbance pressure in the
form

(X, )—’,7?,[3‘)=(X, Y.Z.ptye - (20)
one has

cut vt ow” 0 an
X Ty TEz T -

cU* cu™ au* cu”

+ V277% _ + ’1 Ty

N S UL O S
SR Lo Y L S
TR X TR T czZ: 22)
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gut ~):—+-e"2U“‘i.l;\: +et é‘Y*+ 12 V*%l%
a”zU*aaw + '/ZV*%%
= ~s%+sla;;: +a;;: +C:;; (24)
eu’”gf—(-f- s"'zU*a.}+v+§g+e”2 V*a;
(ST o

Since the terms & du*/OX, &2 8p%/0X, € 6°u*)
X2, e 8%t oX?, & &'w*/0X?, and & 2% /0K in
equations (21)—(25) are smaller than the rest of the
terms in their respective equations, these terms can be
omitted. The omission of these lowest order terms
in the disturbance equations is consistent with the
level of approximation of the main flow. With the
above-mentioned terms deleted and by making use
of equation (20), the disturbance equations reduce to

dvt  owt
—(7:7+—(3—Z~=0 (26)
ouU* ou* oU* cu*
- « 01 12+ *
Wy TUT Gy TR Gy 5y
ot wt
=% tazm @D
—y2 +§E uﬁ"’+ * *E_Li
Rep V'*u 6X+U 5% v 6Y+V 3z
St 8t
op év Gr
= 6Y2 +or 3 Lt (28)
ow* owr  op* 6 vt 62w+
* * —_—
UtV Tt T @
00 ot a6 ot
—_— *___ —_ * _
ut 6X+U 6X+Re 6Y+V Fh%

1 {o%r it

= E(a—yf * 7) 30)
Note that the main flow quantities, such as U*,
oU*[dX, cU*[0Y, V*, dV*[dX, 6V*/8Y, ¢6/0X, and
00/3Y, can be expressed in terms of f(y), 6(n) and
their n derivatives. For example, U* = f'(n), V* =

~ X" f(m)—nf ()2, and 80/6Y = X~ "0’ (n).
Next, the pressure terms in equations (28) and (29)
are eliminated by cross differentiation and subtrac-
tion. The resulting equation is then differentiated
with respect to Z once and the substitution dw™*/
0Z = —3év*/¢Y from the continuity equation is em-
ployed to remove the terms involving the function
w* and its derivatives. This operation will yield three
equations for the disturbance quantities u*, v*, and
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t*. For the non-parallel flow model considered here,
these quantities are expressed as

(u* v, 17) = [ue(X, V), vo(X, V), to(X, V)] exp (iaZ)
3hH

where « is the dimensionless azimuthal wave number
of the disturbances. That is, the longitudinal vortex
rolls are taken to be periodic in the spanwise Z-direc-
tion, with the amplitude functions depending on X
and Y.

Substituting equation (31) into equation (27), the
combined form of equations (28) and (29) as
described above, and equation (30), and letting

a'=a’X, u=u, v=voRe!®, t=1t, (32)

one arrives at the following system of partial differ-
ential equations for the disturbance amplitude func-
tions u, v, and ¢:

cu

D u+a*Dutatu+tate = [ Y—— (33)
D“v+b’}‘D3v+b‘;Dzv+b*Dv+b§L'+b‘,-‘u+b§t
év
_fX——(D L)+f"X (DL)—fszﬁ, 34
Ct
D2t +dt Dt +dt+du+d% = Pr fzyé%, 35)
with boundary conditions
u=v=Dr=t=0 atn=0 and o (36)
where
at=3(f=nf), a¥=inf"—a at=~f
=3U=nf), by¥=13if —inf" -2,
by = f" =33 (f=nf"), bi=a'+ix(nf" =),
by = ia*(f—nf' —nf"), bt= —2*(Gr./Re}?),
di=4Pr(f-nf). di= o,
dt=3Prnd, d%= —Pro 37

in which fand 6 and their derivatives with respect to
n are from solutions of equations (1)-(3).

Equations (33)~(35) are partial differential equa-
tions and D* stands for the kth partial differentiation
with respect to n. The boundary conditions, equation
(36), arise from the fact that the disturbances vanish
at the wall and in the free stream. The condition
Dv =0 results from the continuity equation (26)
along with w =0 at n =0 and <. These boundary
conditions, however, are not sufficient for equations
(33)-(35) if the X derivatives of u, v, and r are not to be
set arbitrarily equal to zero. For weak X dependence,
6/0X « 0/0n and the terms on the right-hand side of
equations (33)~(35) can be deleted or ‘truncated’. This
results in a system of equations for the ‘local simi-
larity’ solution method, that resembles closely the sys-
tem of equations for the case of the parallel flow model
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in which the amplitude functions u, ¢, and ¢ depend
only on the Y or » coordinate.

To define the problem completely, one needs to
specify the initial conditions for u, v, and ¢ at an
upstream location X = X|. However, for the problem
considered here, the terms involving X ¢/¢X can be
replaced with n &/¢y by the coordinate transformation

¢ I

X. = AT o= 0. 38
cX on cX Zrl(‘n (38)
With this transformation, equations (33)—(35) can be
reduced to the following system of ‘ordinary differ-

ential equations’:
Du+4a, Du+a.u+a,c =0

DY+b, Dv+b-Dr+b,Dr+br+bsut+byt =0
(40)

(4D

(39)

Dt+d, Di+d-t+du+d,r =0

along with the same boundary conditions as given by
cquation (36). The coefficients in equations (39)—(41)

are

ay =\ a.=uat, ay=a}

bo=Af b= 320 b= [ A
hy=b%, b;=05b% b, =>b¥

dy = Prf. dv=dt, dy=d¥t, d,=d% (42)

The system of coupled differential equations, equa-
tions (39)-(41), along with the boundary conditions,
equation (36), constitutes an eigenvalue problem of
the form

E(x,Gr./Re}l " Pr,n) = 0. 43)

For given values of the exponent n and the Prandtl
number Pr, the value of Gr/Re}’? satisfying equation
(43) is sought as the eigenvalue for a prescribed value
of the wave number =.

NUMERICAL METHOD OF SOLUTIONS

The system of equations for the main flow and
thermal fields, equations (1)—(3), was solved by a finite
difference scheme in conjunction with a cubic spline
interpolation method similar to, but modified from
that described in ref. [S5] to provide the main flow
quantities £, /7, f”, 0, and 8 that are needed in the
stability computation as well as in the determination
of the local Nusselt number and the local friction
factor. To conserve space, the details of the finite
difference method of solution are omitted here. The
stabtlity problem, equations (39)-(41) and (36),
was solved by a finite difference scheme along with
Miller's shooting method, which parallels those
described in ref. [S] and is also not repeated here. It
suffices to mention some of its highlights. Equations
(2)y and (41) will become stiff when the Prandtl number
is large. To solve stiff differential equations by the
finite difference method, an upwind scheme or its equi-
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valent is required. In the present study a finite differ-
ence method based on a weighting factor [3] is used
which enables the numerical scheme to shift auto-
matically from the central difference algorithm to the
upwind difference algorithm, and vice versa. Also, to
proceed with the numerical calculation of the stability
problem, the boundary conditions at n = n, need to
be approximated by the asymptotic solutions of equa-
tions (39)-(41) atn = 5, (i.e. at the edge of the bound-
ary laver). Since f"=0=0 =0 at n=n,, the
asymptotic solutions for u. v, and r at # = 5, can be
obtained as

u, =exp(—my,), wu, =uy=u, =0

vy =cxp(—ay, ). ts=exp(—my,).

vy =exp{—ryg,). ry=exp(—by,).

ty=exp(—rm,), t,=1.=t;=0 (44)
where
r={—PrC +[(PrC) +4x°]' %) 2
m={-C, +[Ci+4x7]' "} 2
h={—C+[CI+4(*~f D)1 2 (49
with C, = —f/2. At any y location. the solutions for
u, v, and ¢ are
u(n) = Ky (n) + Koo () + K (0 + Ky 0p)
e(m) = Ko (1) + Kara(n) + K () + Kara ()
tn) = Kot \(im+ K09+ Kt (N + Ko,07) (46)

where K, K>. K;. and K, are constants.

With a preassigned value of the exponent »n. the
main flow solution is first obtained for a fixed Prandtl
number, Pr. Next, with the wave number xz specified
and the guessed value of Gr /Re? . the finite difference
form of equations (39)—~(41) and (36) is numerically
solved from # = 0 to 5, ending with the asvmptotic
solutions for u, ', and ¢ at n = n. The correction for
the value of Gr,/Re} * is then made by Miiller’s shoot-
ing method until the boundary conditions at the
wall (n = 0) are satisfied within a certain specified
tolerance [2]. This yields a converged value of
Gr./Rel* as the eigenvalue for given values of n, Pr,
and z.

After some experiments with the numerical solu-
tion, a step size of An = 0.005 and a value of y, =
10 were found to be sufficient for both the main flow
and the stability calculations for Pr = 10-. 107, and
10*. However, for Pr=0.7 and 7, a step size of
An = 0.005 and a value of y, = 20 were needed to
provide accurate numerical results for both. It is also
of worth noting that a smaller step size Az is found to
be more important than a larger value of 5, for the
accuracy of the numerical computations. especially
when the wave number z is small.
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RESULTS AND DISCUSSION

To determine the stability and instability domains
and the minimum value of Gr./Re* for the first onset
of the vortex instability under various values of the
exponent n and the Prandtl number Pr, neutral sta-
bility curves (i.e. the Gr,/Re* vs wave number curves)
as well as the critical values of Gr./Rel? and the
corresponding critical wave number were obtained.
Neutral stability curves for 0.7 < Pr < 103 are plotted
in Fig. 1 for exponent n = 0 (which is the uniform
wall temperature case, UWT) and in Fig. 2forn = 0.5
(which corresponds to the uniform surface heat flux
case, UHF). It can be seen from these figures that
as the Prandtl number increases the neutral stability

20
60 ¢
T e e Pr=1000
n=0
50 I Pr=100 P
gx i(uNT) SR, =
v a0 b { —— —Pr=0.7
N l,"
x 4
& w0 ; /
20 } / g
!N/
oy -
10 ] e =T 9
N

70
60 } !
| n=0.5  ____._ Pr=1000
§ 50 i (uHF) Pr=100 1
™ x /] ——— Pr=7
g a0 [ ! ———— —Pr=0.7
1
x [
& 30 :
4] 1 /' . /
o
-] 2 4 [ 8
(04
Fi1G. 2. Neutral stability curves for n = 0.5 (UHF).
70
/]
80 b ) , J
P /s
[\ ’
k.." 50 A ,'/
Vs
@ 40} 4 ’/j
N Ve
Lx 30 | 4
(L]
20
10}
0
0.3 1.5

FiG. 3. The effect of n on the neutral stability curves for
Pr=0.7
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curves shift right-upward to larger values of the wave
number and Gr /Re}?. That is, the flow will become
less susceptible to the vortex mode of instability as
the Prandtl number increases. In addition, it can be
observed that the larger the Prandtl number, the larger
is the critical wave number, a*.

Figures 3~7 show the effect of the exponent # on the
neutral stability curves for various Prandtl numbers
between 0.7 and 10*. It can be seen from these figures
that for a given Prandtl number, the neutral stability
curve shifts upward with increasing value of the
exponent n. That is, the flow becomes less susceptible
to the vortex mode of instability as the value of the
exponent n increases.

The critical values of Gr./Re? denoted by G* and

40

30L

3/2
Gry, /Rey

10{

Pr=1.

3/2
x

Gry /Re

FiG. 5.
Pr = 100.

as

0.1.5 2.5 3.s 4.5 5.5 a.s 7.5 8.5
04

F1G. 6. The effect of n on the neutral stability curves for
Pr = 1000.
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35

30

e
X

Gry /Re

FiG. 7. The effect of n on the neutral stability curves tor
Pr =10 000.

the corresponding critical wave number «* from the
present calculations for the different values of n and
Pr are listed in Table 1. From Table 1, it can be seen
that for a given Prandtl number Pr the critical values
of Gr.jRe? ? for n > 0 are larger than that for the case
of n = 0 (uniform wall temperature), but are smaller
when # < 0. This implies that the flow will become less
susceptible to the vortex instability as the value of »
increases. This is to be expected, because when n = 0
there is a step jump in the temperature difference
(T.—T,) = A for all x, whereas for n > 0 the wall
temperature starts with 7, =7, at x=0 and
increases with x, and for n < 0 it starts with 7, —» ¢
at v = 0 and decreases with x. Thus, for n < 0 larger
jumps in (T, —T,) occur at small x than for n = 0,
which contributes to an earlier onset of the instability
and hence a smaller critical Gr./Re¥? value. This same
trend was also observed in refs. [11, 12]. Also included
in Table I are the —'(0) and f”(0) values. For a given
Pr, a larger value of the exponent » is seen to provide
a larger local Nusselt number due to the larger —0°(0)
value.

The effect of the exponent n on the critical values
of Gr/Rel* as a function of Prandtl number is illus-
trated in Fig. 8. It is interesting to observe from Fig.
8 that for a given value of the exponent n the critical
Gr./Re! ? value increases with increasing Prandtl
number until Pr = 100 and then becomes almost a
constant, finite value when the Prandtl number is
larger than 100.

In Table 2 the critical values of Gr/Re¥?, G*, and
the critical wave number, x*, from the present analysis
for the case of n = 0 (uniform wall temperature) are
compared with results from the previous studies by
others. Owing to some numerical errors in the work
of Wu and Cheng [1], as pointed out by Moutsoglou
et al. [2]. the accuracy of the results from ref. [1] is
subject to question. The results from ref. [2] were
based on the parallel flow model in which the ampli-
tude functions of the disturbances are assumed to
be independent of the streamwise coordinate. The
predicted critical values of Gr./Re}? from ref. [2] are
about two orders of magnitude lower than those from
the experiments by Gilpin er al. [6], Moharreri e al.
[9]. and Hayashi et al. [13].

)* a* and —0°(0)

rike)?

N

Table 1. Numerical results for critical values G* = (€

Pr=10*

2r= 10"

= 107

Pr

=17

Pr -

Pr—=0.7

—0 ()

G* a* — (' (0) G* o*

— ()

«*

o* —{) (V)

«*

- (0)

G*

4.7023

2.5347
2.3955

2.1520

13.380

0.67547

11.774

F1.127
9.9957
8.5597

10.149
10.005

13.658
12.750
11.283

5.4618
5.1619
4.6374
39713
3.3875
2.5813

13.609

12.704
11.243

35

213

1.04362

9.5394
8.6024
7.4243
5.7232
4.8184
3.2740
2.0241

0.48034

0.58434
0.59728

6.8730

6.4294

1.0

0.8

4.6347
4.5214
4.3806
4.2627
4.1157

3.8090

2.1089
2.0531

12.481
11.027

0.67639  0.98615
0.63904

0.45329

9.7629
9.4604
9.2089
8.8958
8.2320

0.88562

0.40590

5.2959  0.56774
4.6620 0.34557

4.2556
2.7737

0.5

9.6404
8.3941
6.9537

145E-04  4.0881

9.6053

1.8429
15719
1.1976

1.9827
1.9235
1.8492
1.6881

9.3980
8.1631
6.7381
3.9221

0.58644  0.75791

0.56796

0.55593

0.2
0
—-0.2

—0.5

7.3014

5.5641

8

6.9266

a
4.0704

R.36

0.64593

0.29268

0.52183

0.54486 0.49134
0.51124

0.22004

0.49522

3.46E-03

-05

3.36E

L.STE-05

0.45637 132005

1.9853

= iy

O

- 0,332058 for Blasius flow, B

/7

Note:
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Fic. 8. Critical values of G* = (Gr,/Re}*)* for 0.7 <
Pr<10*and —05<n< 1.0,

The critical Gr/Re’? values from the present analy-
sis for the UWT case (n = 0) are 8.163, 8.363, and
8.394 for Pr = 107, 10°, and 104, respectively. This is
in contrast to the value of 7.797 obtained by Yoo et
al. [4] by power series solution for Pr— o0. The
present analysis is not limited to large Prandtl num-
bers and the present results are believed to be more
accurate. Also, the present critical wave number a*
can be related to the critical wave number &* based
on the thermal boundary layer thickness 4, as
employed in ref. [4], by

a* = 3% Pr'/4.64 (47)

where the constant 4.64 comes from the coefficient of
the momentum thickness J,,/x = 4.64Re; "/? [14] and
0. = Pr'? &, It appears that «* — co when Pr — 0.
However, for large Prandtl numbers, say, Pr = 107,
104, and 10*, the critical wave numbers from the pre-
sent calculations for the n = 0 case in terms of &* are
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respectively 1.923, 1.978, and 1.983. Thus, this trend
in the change of 3* with increasing Pr agrees well
with the calculated value of 1.98 by Yoo et al. [4] for
Pr- <.

The results of Chen and Chen [3] for the UWT case
provide the critical values of Gr /Rel* = 7.78-8.13
and 4* = 1.97 for Pr = 1-o0, which are generally in
good agreement with the present results.

It is important to note that for a given value of the
exponent n both the critical values of Gr./Re}* and
the corresponding critical wave number 2* increase
with an increase in the Prandtl number. However, the
critical Gr./Re¥? value approaches a finite value when
the Prandtl number becomes larger than 100 (see Fig.
8). In addition, for a given Prandtl number Pr, a larger
value of the exponent n provides a larger critical
Gr./Re}? value.

From a comparison between the results from the
present analysis and that of Moutsoglou et al. [2],
it is apparent that an accounting of the streamwise
dependence of the disturbance amplitude functions
reduces the susceptibility of the flow to the vortex
mode of instability. From Table 2 one can see that the
critical values of Gr /Re¥? for Pr =0.7 and 7 from
the present analysis increase by about one order of
magnitude when compared with the results of ref. [2],
thus bringing the predicted values.to one order closer
to the experimental values for air and water as given
in refs. [6, 9, 13]. The discrepancy in the results
between the linear theory and experiment seems
reasonable because natural disturbances in a bound-
ary layer flow need to be amplified before they can be
detected, whereas the present prediction is based on
the linear theory in which the disturbance quantities
are assumed to be infinitesimally small.

Table 2. Comparison of critical values of G* = (Gr/Re}*)*, n = 0 (UWT)

Reference Main flow Model Pr G* a*
Wu and Cheng [1] (1976) forced paralle! 0.7 292.5 0.11
convection flow 10 75.48 1.72
10* 13.46 295
10° 2.406 3.90
10* 1.816 7.2
Moutsoglou et al. [2] (1981) mixed parallel 0.7 0.447 0.001-0.060
convection flow 7 0.434 0.0008-0.036
Chen and Chen (3] (1984) forced non-parallel o0 7.78-8.13 0.425-
convection flow
Yoo et al. [4] (1987) forced non-parallel x 7.797 e
convection flow (* = 1.98)
Present analysis forced non-parallel 0.7 4.2556 0.52183
convection flow 7 4.8184 0.56796
30 7.6285 1.1691
50 7.9400 1.4729
10? 8.1631 1.9235
10° 8.3628 4.2627
10° 8.3941 9.2089
Hayashi et al. {13] (1977) forced experiment 0.7 192 -
convection (air)
Gilpin et al. [6] (1978) forced experiment ~7 46110 0.895-2.049
convection (water)
Moharreri et al. [9] (1988) mixed experiment 0.7 ~ 100 -
convection (air)
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As a final note, it is mentioned here that solutions
of eqrations (33)—(36) by the local similarity method.
with terms containing X ¢/CX in these equations
deleted. have provided critical values of G* =
(Gr. Re}*)* that are smaller than those from solu-
tions of equations (39)-(41). For example, for
Pr=0.7 the value of G* from the local similarity
solution varies from 1.7525 to 2.9620 to 4.1664 as the
value of the exponent # is increased from —0.5t0 0
to 1.0. This is in contrast to the values of G* of 1.9853
to 4.2556 to 6.8730 listed in Table 1 from solutions of
the ‘untruncated’ equations (39)-(41). The cor-
responding critical G* values for Pr = 100 with
n= —0.50, and 1.0 are 0.2804, 0.5986, and 1.0702,
ascompared to 3.9221, 8.1631, and 13.380 from Table
1. Thus, the local similarity solution yields a critical
G* value that decreases with increasing Prandtl num-
ber Pr for a given value of n. This trend is opposite
to that from solutions of equations (39)-(41), which
shows that G* increases with increasing Pr.

CONCLUSION

In this paper, thermal instability of forced con-
vection in laminar boundary layer flow over a heated
horizontal flat plate with power-law variation in the
surface temperature has been investigated analytically
using the non-parallel flow model. Neutral stability
curves as well as the critical values for Gr./Re?? and
the corresponding critical wave numbers are presented
for Prandtl numbers 0.7 < Pr<10* covering
exponent values —0.5 <n < 1.0. The major find-
ings from the present study can be summarized as
follows.

(1) For the power-law variation in the wall tem-
perature, the critical value of Gr/Rel? and the cor-
responding critical wave number o* both increase with
increasing value of the exponent » for a given value
of the Prandtl number Pr.

(2) For a given value of the exponent n, the critical
values of Gr./Re?? and «* both increase with increas-
ing value of the Prandtl number Pr. However, the
critical Gr./Re}? value approaches a finite, constant
value when the Prandtl number Princreases to a value
larger than 100.

(3) The more rigorous analysis by the non-parallel
flow model in the present study provides a larger
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critical Gr/ Re; * value than the previous analysis by
the parallel flow model.

Acknowledgement—Part of the numerical results reported in
this paper was obtained by using a CRAY X-MP Super-
computer through the facility of the National Center for
Supercomputing Applications (NCSA) at the University of
Illinois.

REFERENCES

1. R.S. Wuand K. C. Cheng, Thermal instability of Blasius
flow along horizontal plates, /nt. J. Heat Mass Transfer
19, 907-913 (1976).

2. A. Moutsoglou, T. S. Chen and K. C. Cheng. Vortex
instability of mixed convection flow over a horizontal
flat plate. J. Hear Transfer 103, 257-261 (1981).

3. K. Chen and M. M. Chen, Thermal instability of forced
convection boundary layers, J. Heat Transfer 106, 284
289 (1984).

4. J.Y. Yoo. P. Park, C. K. Choi and S. T. Ro. An analysis
on the thermal instability of forced convection tlow over
isothermal horizontal flat plate, /nt. J. Hear Muss Trans-
Jer 30, 927-935 (1987).

. S. L. Lee, T. S. Chen and B. F. Armaly. New finite
difference solution methods for wave instability prob-
lems, Numer. Hear Transfer 10, 1-18 (1936).

6. R. R. Gilpin, H. Imura and K. C. Cheng. Experiments
on the onset of longitudinal vortices in horizontal Blasius
flow heated from below, J. Hear Transfer 100, 71-77
(1978).

7. E. M. Sparrow and R. B. Husar, Longitudinal vortices
in natural convection flow on inclined surfaces. J. Fluid
Mech. 37, 251-255 (1969).

8. H. I. Abu-Mulaweh, B. F. Armaly and T. S. Chen.
Instabilities of mixed convection flows adjacent to
inclined plates, J. Hear Transfer 109, 1031-1033 (1987)

9. S.S. Moharreri, B. F. Armaly and T. S. Chen. Measure-
ments in the transition vortex flow regime of mixed con-
vection above a horizontal heated plate. J. Ffear Trunsfer

110, 358-365 (1988).

10. S. E. Haaland and E. M. Sparrow. Vortex instability of
natural convection flow on inclined surfaces. /ne. J. Hear
Mass Transfer 16, 2355-2367 (1973).

11. C. T. Hsu, P. Cheng and G. M. Homsy. Instability
of free convection flow over a horizontal impermeable
surface in a porous medium, [nt. J. Heat Muass Transfer
21, 1221-1228 (1978).

12. C.T. Hsu and P. Cheng, Vortex instability in buoyancy -
induced flow over inclined heated surfaces in porous
media, J. Heat Transfer 101, 660-665 (1979).

13. Y. Hayashi. A. Takimoto and K. Hori. Heat transfer in
laminar mixed convection flow over a horizontal flat
plate (in Japanese), Proc. 14th Japan Heat Transfer
Symp., pp. 4-6 (1977).

14. W. M. Kays and M. E. Crawford. Convective Heat and
Mass Transfer (2nd Edn), Chap. 7. McGraw-Hill, New
York (1980).

>3



2028

H. R. LEE et al.

INSTABILITE THERMIQUE DE LA CONVECTION FORCEE SUR UNE PLAQUE
PLANE HORIZONTALE, CHAUDE, NON ISOTHERME

Résumé—Un modéle linéaire & écoulement non paralléle est utilis¢ pour étudier I'apparition de I'instabilité
tourbillonnaire longitudinale dans 'écoulement forcé laminaire pariétale variable selon T, (x)—T,, = Ax".
Dans cette analyse, la dépendance des fonctions d’amplitude de perturbation est prise en compte. Le
systéme résultant d’équations linéarisées pour les fonctions d’amplitude constitue un probléme aux valeurs
propres qui est résolu par un schéma aux différences finies avec la méthode de tri de Miiller. Les courbes
de stabilité neutre ainsi que les valeurs critiques de Gr,/Re? et les nombres de Prandtl 0,7 < Pr < 10*
avec un domaine d'exposant —0,5 € n < 1,0. Pour un nombre de Prandtl donné, 'instabilité thermique
décroit lorsque P'exposant n augmente. Pour une valeur donnée de n, les fluides a grand nombre de Prandtl
montrent moins de sensibilité aux instabilités que des fluides 4 faible nombre de Prandtl. Cette tendance
existe pour Pr < 100. Pour Pr > 100, les valeurs critiques de Gr,/Re}* deviennent constantes et indé-
pendantes du nombre de Prandtl. L'analyse a écoulement non paralléle qui tient compte de la dépendance
des fonctions d'amplitude a un effet stabilisant par rapport a 'analyse 4 écoulement paralléle dans laquelle
on néglige cette dépendance.

DIE THERMISCHE INSTABILITAT EINER ERZWUNGENEN
KONVEKTIONSSTROMUNG UBER EINE BEHEIZTE, NICHT ISOTHERME
WAAGERECHTE EBENE PLATTE

Zusammenfassung—Mit Hilfe eines linearen Modells fiir nicht-parallele Strdmung wird das Einsetzen der
Lingswirbel-Instabilitit in laminarer erzwungener Konvektionsstromung liber eine beheizte horizon-
tale ebene Platte bei variabler Oberfliichentemperatur (7,(x)— T, = Ax") untersucht. Dabei wird die
Abhingigkeit der Stérungsamplituden-Funktionen in Stréomungsrichtung berlicksichtigt. Es ergibt sich ein
System von linearisierten Storungsgleichungen fir die Amplituden-Funktionen, das ein Eigenwertprob-
lem darstellt. Dieses wird mit Hilfe eines Finite-Differenzen-Verfahrens unter Verwendung des Zufalls-
verfahrens nach Miiller geldst. Es werden die Kurven neutraler Stabilitdt berechnet, auBerdem die
kritischen Werte fiir Gr./Re}? und die entsprechende kritische Wellenzahl x* (Prandtl-Zahl: 0,7
Pr < 10*; Exponent: —0.5 < n < 1.0). Es zeigt sich, daB bei gegebener Prandtl-Zahl die thermische In-
stabilitdt mit steigenden Exponenten abnimmt. Fiir einen gegebenen Wert des Exponenten n sind Fluide
mit groBer Prandtl-Zahl weniger anfiillig fiir die Instabilitit als Fluide mit kleiner Prandtl-Zahl. Dieser
Trend gilt fiir Pr < 100. Fiir Pr > 100 wird der kritische Wert von Gr,/Re?? im wesentlichen konstant und
unabhdngig von der Prandtl-Zahl. Die Ergebnisse der hier vorgestellten Untersuchung werden mit verfiig-
baren analytischen und experimentellen Ergebnissen aus friheren Studien verglichen. Dabei zeigt sich,
daB die Beriicksichtigung der Amplituden-Funktionen einen stabilisierenden EinfluB hat.

TETIJIOBASI HEYCTONYUBOCTD BbIHYXAEHHOIO KOHBEKTUBHOI'O TEYEHUSA
HAJl HATPETO HEM30TEPMHUYECKOW MOPH3OHTAJIBHOM IJIOCKOM MJIACTUHOM

Amoraums—JIHHefHas MOJe/Ib HEMAPAJUIENBHOrO TEYEHHS UCTIONBL3YETCH AJIA HCCIIERAOBAHHSA BOSHHKHO-
BEHHA NPOROJILHOA BHXPEBOH HEYCTOHYMBOCTH MNPH JIAMHHADHOM BBIHYXKACHHOM KOHBEKTHBHOM
TeYeHHH HAN HArpeToH TOPH3OHTANBLHOM IUIOCKOH IUIaCTHHOH C MEPEMEHHOH TeMmepatypoil nosepx-
HocTH, T (x) — T, = Ax". IlpH aHanu3e yYATHIBAETCA 3aBUCHMOCTE GYHKUMA aMILTHTY bl konebanuit ot
HanpasjeHus TeveHus. [losnyyeHHas cHCTeMa JIHHEAPH3OBAHHLIX YPABHEHMH BO3MYLUCHHA IJIA aMILIH-
TyAHRIX QYHKUHMHA NpencTaBiaseT coGoi 3amauy Ha cCOGCTBEHHBIC 3HAYECHHA, PEIIACMYIO C HCHOMbL30BA-
HHEM KOHEYHO-Pa3HOCTHOH CXeMBl M MeTola mnpucTpenkn no Miomnepy. HeilitpanuHele kpusbie
YCTOHYHMBOCTH, a Takke KPHTHYeCKHe 3Havenus Gr./Re’’ W COOTBETCTBYIOMIME KPHTHYECKHE BONHOBLIE
YyHcna a* NpeACTaBeHl JUIA 3HAYCHAR YHCIa l'lpaum'm 0,7 € Pr < 10* B aManasoHe 3HaveHHii nokasa-
Teas creneHd —0,5 € n < 1,0. O6HapyxkeHo, 4To NpH GHKCHPOBAHHOM 3Ha4veHuH wucna [TparaTns ten-
NOBas HEYCTOHYHBOCTE YMEHBIIACTCA € POCTOM MOKa3aTens creneHy n. [IpHueM npH NJaHHOM 3HAYEHHH
noxasatesis CTENCHH n XHIKOCTH C BHICOKHMH YHCIaMH [IpanaT/ia NpoABASIOT MEHBILYIO BOCTIPHHMYH-
BOCTb K HEYCTOHYHBOCTH, H€M XMIAKOCTH C Hu3kuMHM uncnamu [Ipannrnsa. OnHaxko 3Ta TEHAEHUMS
cyimectayeT npu Pr < 100. Korna Pr > 100, kxpuTHyeckue 3uauenua Gr /Re¥? CTaHOBATCA CylueCcTBeHHO
TIOCTOAHHBIMH H HE 3aBUCAT OT uucia [IpaHnrns. PesynsTaThi NpOBENEHHOrO aHAMM3a HeMapasulesib-
HOTO TE4eHHA CPABHHBAIOTCA C HMCIOIHMHCA AHANUTHYECKHMH H IKCNEPHMEHTAJILHBIME QaHHBIMH TIpe-
OpRylMX uccnenosaHuii. Hajigewo, 4To npu aHanule Hemapa/UICAbHOIO TEYEHHs, YYTHIBAIOLIEM
3aBHMOCTb AMILTHTYAHBIX GYHKIMA OT HANpPAaBlICHUSA NOTOKA, NPOABANETCA CTaCHIM3NpYIoUHit dddexT,
OTCYTCTBYIOUIMA ODH aHajM3e C NOMOIUBLIO MOIC/IH HENapaJUIEILHOrO TEYEHHs, B KOTOPOM IaHHOMH
3aBHCHMOCTBIO NNpeHeSperaioT.



